
AUTOMATED OPTIMIZATION OF DECODER HYPER-PARAMETERS FOR ONLINE LVCSR

Akshay Chandrashekaran1, Ian Lane1,2

1Electrical and Computer Engineering, Carnegie Mellon University
2Language Technologies Institute, Carnegie Mellon University

akshayc@cmu.edu, lane@cmu.edu

ABSTRACT

In this paper, we explore the usage of automated hyper-
parameter optimization techniques with scalarization of mul-
tiple objectives to find decoder hyper-parameters suitable for
a given acoustic and language model for an LVCSR task.
We compare manual optimization, random sampling, tree
of Parzen estimators, Bayesian Optimization, and genetic
algorithm to find a technique that yields better performance
than manual optimization in a comparable number of hyper-
parameter evaluations. We focus on a scalar combination
of word error rate (WER), log of real time factor (logRTF),
and peak memory usage, formulated using the augmented
Tchebyscheff function(ATF), as the objective function for
the automated techniques. For this task, with a constraint on
the maximum number of objective evaluations, we find that
the best automated optimization technique: Bayesian Opti-
mization outperforms manual optimization by 8% in terms
of ATF. We find that memory usage was not a very useful
distinguishing factor between different hyper-parameter set-
tings, with trade-offs occurring between RTF and WER a
majority of the time. We also try to perform optimization of
WER with a hard constraint on the real time factor of 0.1.
In this case, performing constrained Bayesian Optimization
yields a model that provides an improvement of 2.7% over
the best model obtained from manual optimization with 60%
the number of evaluations.

Index Terms— LVCSR, hyper-parameter optimiza-
tion, on-line decoder, memory footprint, WER, RTF, multi-
objective optimization, sequential model-based global opti-
mization, Bayesian optimization, tree of Parzen estimators,
genetic algorithm, random sampling, constrained Bayesian
Optimization

1. INTRODUCTION

State of the art on-line speech recognition systems for large
vocabulary continuous speech recognition (LVSCR) are typ-
ically built with large acoustic models and language models.
However, it is essential to configure the decoder to give ac-
curate transcriptions with the fastest possible speed. Also
the process of decoding should take as less computational re-

sources as possible so that more instances can be run in par-
allel, allowing for a single machine to serve more people.

Weighted finite state transducer (WFST) based decoders
have become ubiquitous for LVSCR[1]. These typically in-
volve the use of a deep neural network (DNN) acoustic model
which gives the acoustic state likelihoods[2]. This is used
with an WFST generated from a lexicon and weak language
model to generate a frame level lattice that encodes the var-
ious possible transcriptions for an utterance along with their
likelihoods.

Typically, the size of a WFST based decoding graph de-
pends on the size of the language model. However, using a
weaker language model to generate an initial lattice, and then
rescoring the lattice with a larger language model has shown
to give nearly the same results in terms of word error rate
(WER) as using a decoding graph generated directly from the
larger language model, while using far lesser memory [3].

Recent work in hyper-parameter optimization has shown
superior performance over human baselines. These optimiza-
tion techniques have shown to find better hyper-parameter set-
tings than manual optimization in most cases, and reasonably
fast convergence rates. Here, we explore how these tech-
niques perform when constrained by the number of allowed
optimizations as done by the manual optimization technique.

We are thus faced with a multi-objective optimization
problem to find the best hyper-parameters for this task. How-
ever, given a ratio of importance of the objectives, it is possi-
ble to convert this multi-objective optimization scenario into
a single objective optimization problem. We will also look at
the application of constrained optimization techniques where
one of the objectives can be reformulated as a constraint.

The rest of the paper is organized as follows. In section 2,
we describe the prior work done for similar tasks. In section 3,
we discuss the various optimization strategies explored in this
paper. In section 4, we describe the hyper-parameters of the
decoder we will be tuning with the optimization techniques.
In section 6, we describe the experimental setup for the task.
In section 7, we describe the results of our experiments. We
provide our conclusions in 8.



2. PRIOR WORK

In [4], the authors show that Bayesian optimization and
covariance mean adaptation evolution strategy (CMA-ES)
outperform manual optimization, but use only word error
rate (WER) as the objective and tune a GMM model on the
TIMIT task. [5] looks at multi-objective CMA-ES to opti-
mize towards model size and WER for a DNN-HMM system.
However, they perform only tuning of DNN model hyper-
parameters and do not look at the decoder hyper-parameters.
[6] use constrained Bayesian optimization to tune DNN
model hyper-parameters, but only consider improvement in
terms of WER of the validation set. [7] performs a scalariza-
tion of WER and real time factor (RTF) and perform a varia-
tion of co-ordinate descent to tune decoder hyper-parameters,
but only deal with continuous hyper-parameters. The authors
are not aware of any research done on tuning DNN-HMM
continuous and discrete decoder hyper-parameters towards
multiple objectives.

3. OPTIMIZATION TECHNIQUES

3.1. Manual Optimization

We found no standard procedure for performing manual opti-
mization in literature. Hence, we opted to talk to some scien-
tists working on developing speech recognition systems on-
line. We found a practice where the decoder was run with
maximum beam related settings to find the optimal language
model re-weighting parameter in terms of WER. Once this is
done, the beam hyper-parameter was searched to find a beam
that allowed a degradation in WER by 10% relative. Once this
was done, the lattice beam was searched to find a point that re-
sulted in at-most 5% additional degradation in WER. Finally,
the number of maximum allowed active states was swept to
find to the point where there was no additional degradation in
performance. At this point, this system was selected as the fi-
nal, and it’s WER, memory usage and RTF were reported. To
the best of our knowledge, no one has looked at the memory
footprint for the complete decoder system as an objective for
optimization.

3.2. Random Sampling

This is a simple technique of automated hyper-parameter op-
timization proposed in [8]. In this, each hyper-parameter is
sampled from a uniform distribution with bounds specified
manually. Once a tuple of hyper-parameters is selected, its
objective function is evaluated. This method has been shown
to perform remarkably well for various tasks, especially com-
pared to grid search. It provides a natural and simple base-
line for comparisons against more involved techniques like
SMBO. For constrained random sampling (CRS), we only
consider iterations that satisfy a specified constraint.

3.3. Sequential Model-Based global Optimization (SMBO)

SMBO is an iterative method for hyper-parameter optimiza-
tion that uses the results of objective function evaluations
done previously to guide the search. Using the previous
information, and a surrogate function (also known as an
acquisition function) to guide the search, the algorithm de-
termines where to evaluate the true objective function next.
The standard SMBO is given in Algorithm 1. H is the set
of points seen till current time. M0 is the initial model to be
fit over existing observations. S is the surrogate function or
acquisition function.

Algorithm 1 Sequential Model-based Global Optimization
(SMBO)

1: procedure SMBO(f,M0, T, S)
2: H ← φ,
3: for t← 1 to T do
4: Fit a model Mt toH,
5: x∗ ← argminx S(x,Mt),
6: Evaluate f(x∗), (Expensive)
7: H ← H∪ (x∗, f(x∗)),
8: end for

returnH
9: end procedure

3.3.1. Gaussian Process(GP) based Bayesian Optimization

Bayesian Optimization is an SMBO technique that models
the objective function as a Gaussian process over the hyper-
parameter space [9]. In Bayesian Optimization, we assume
that the objective function to be minimized is modelled by a
GP prior:

f(x) ∼ GP (m(x), k(x,x′))

wherem(x) is the prior mean function, and k(x,x′) is the co-
variance function that determines the smoothness properties
of the samples drawn from it. GPs are closed under sampling.
So, given t arbitrary points, and the corresponding function
value {x1:t, f1:t}, the predictive distribution of the function at
any arbitrary point x is a multi-variate Gaussian. Assuming
the prior mean function is 0 for simplicity,

P (f(x)|x) = N
(
µt(x), σ2

t (x)
)

(1)

where

µt(x) = kTK−1f1:t

σ2
t (x) = k(x,x)− kTK−1k

k =


k(x,x1)
k(x,x2)

...
k(x,xt)

K =


k(x1,x1) . . . k(x1,xt)
k(x2,x1) . . . k(x2,xt)

...
. . .

...
k(xt,x1) . . . k(xt,xt)


(2)



Based on empirical results in [10], the covariance kernel
used is the ARD Matern 5/2 kernel. This mean and vari-
ance function is used to create a surrogate acquisition func-
tion which is easier to evaluate compared to the actual eval-
uation function. This acquisition function guides the hyper-
parameter search and balances between exploration and ex-
ploitation. We used expected improvement as the surrogate
function since it has been shown to generalize well to mul-
tiple examples. This is the expectation of improvement as
defined in [11], and is given by:

EI(x) =


(µt(x)− f(x+))Φ(Z)

+σ(x)φ(Z) if σ(x) > 0

0 else

Z =
µt(x)− f(x+)

σ(x)

(3)

x+ is the hyper-parameter with the best observed objective
function value so far. φ(.) and Φ(.) are the probability and
cumulative distribution function for a normal distribution re-
spectively. More details regarding this can be found in [9].
This expected improvement is tractable to compute across
the different hyper-parameters, and can be optimized using
standard optimization schema. The actual objective function
is evaluated at the point that maximizes the expected im-
provement. This information is plugged back into the system,
which then updates the posterior distribution. For our exper-
iments, we use the Spearmint Toolkit, which implements the
techniques explained in [10].

3.3.2. Constrained Bayesian Optimization (CBO)

Constrained Bayesian Optimization as proposed by [12] in-
corporates constraints with the original performance metric.
It modifies the surrogate function with a probability term as-
sociated with the fulfilment of the constraint. Let Ck(x) repre-
sent the kth constraint condition, which indicates if the con-
straint is satisfied at x. Then, the probabilistic constraint is
P (Ck(x)) ≥ 1−δk where 1−δk is a user specified minimum
confidence for constraint k. All K constraints have to be sat-
isfied. Assuming each constraint is independent of the other,
they are modelled by independent Gaussian Processes. This
can be done by specifying the constraints by a function gk(x)
such that gk(x) ≥ 0 only if Ck(x) is satisfied.The acquisition
function in (3) is modified to

a(x) = EI(x)

K∏
k=1

P (gk(x) ≥ 0) (4)

When no feasible regions are present, the algorithm focuses
on an exploitative search over the constraint function till a fea-
sible region is found. This modifies the acquisition function
to:

a(x) =

K∏
k=1

P (gk(x) ≥ 0) (5)

This enables the algorithm to perform an exploitative search
over the space to find feasible regions, and then perform nor-
mal exploration to find the best possible setting to satisfy the
constraints.

3.3.3. Tree of Parzen Estimators (TPE)

This is another SMBO strategy based on EI optimization. In-
stead of modelling P (f(x)|x) as done by GP based Bayesian
optimization, this models P (x|f(x)) and P (f(x)). TPE de-
fines P (x|f(x)) using two densities:

P (x|f(x)) =

{
l(x) if f(x) < f∗

g(x) if f(x) ≥ f∗
(6)

l(x) is the density formed from all observations with loss
function value less than f∗, and g(x) is the density from the
remainder of the observations. Here, instead of using the
best observed loss as f∗, TPE chooses it to be some quan-
tile γ of the observed values, so that P (f(x) < f∗) = γ.
The two densities l(x) and g(x) are modelled with adaptive
Parzen estimators. Based on the type of hyper-parameter, and
their prior distribution, a density is placed at the vicinity of
the associated observations. Using this parametrization of
P (x, f(x)) as P (f(x))P (x|f(x)), it can be shown that

EI(x) ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1
(7)

This can be used to compute the EI at various points in the
hyper-parameter space, and the actual objective evaluation is
undertaken at the setting that yields best EI. Details of this
equation, and the densities for each hyper-parameter type can
be found in [13]. We use the Hyperopt toolkit[14] for the TPE
experiments.

3.4. Genetic Algorithm (GA)

Genetic Algorithm [15] is a type of evolutionary algorithms
that mimic the process of natural selection. A typical GA re-
quires a genetic representation of the solution domain, and
a fitness function to evaluate the solution domain. Here, we
consider the hyper-parameters to be the genetic representa-
tion, and the objective value obtained by evaluation of the
system as the fitness function. The evolution starts from a
population of randomly selected individuals, with each pop-
ulation set being considered as a generation. The fitness of
each individual is evaluated. More fit individuals are stochas-
tically selected from the population. Then, the individuals
genome is modified by crossover with another fit individual,
and mutated randomly to generate the individuals for the next
population. The new population is used for the next iteration
of the algorithm. Further details regarding the selection pro-
cess can be found in [16]. Details of the genetic operators can
also be found there. For this experiment, we use the stochastic
GA implementation provided by the PyGMO toolkit [17].



4. HYPER-PARAMETERS

In this section we describe the hyper-parameters associated
with the decoder that we will be tuning. The descriptions of
the hyper-parameters are from [18] and [19].

4.1. Acoustic Scale

The acoustic scale affects the dynamic range of the decoder,
and the number of likely paths within the beam. Larger values
mean fewer path being present in the lattice. This was swept
from values ranging from 0.05 up to 0.3 for all automated
optimization techniques.

4.2. Beam

The beam of the decoder applies a threshold over the likeli-
hoods of the active paths in the decoding graph for the current
frame. In effect, any path that has a log-likelihood whose dis-
tance to the most likely path is greater than the beam is pruned
out. This was selected to be a real value from 10 to 18.

4.3. Lattice Beam

This parameter governs the beam to be applied on lattices af-
ter determinization. Only word sequences whose best align-
ment has cost within lattice-delta of the best path are retained.
This was selected to be a real value from 6 to 10.

4.4. Maximum Active States

This specifies the number of maximum active states at each
frame during the decode. This supersedes the beam hyper-
parameter. Smaller values can potentially prune out paths that
were less likely at the start, but are more optimal later. This
was selected to be an integer value from 3000 to 8000 in steps
of 500.

4.5. Minimum Active States

This specifies the number of minimum active states in ev-
ery frame of the decodes. lower values allow for potentially
sparser lattices to be outputted. This was ignored in the man-
ual hyper-parameter optimization step and set to the default
value of 200 used by the decoder. It was varied from 50 to
300 in steps of 50 for automated optimization.

4.6. Pruning Interval

This is a time and memory saving hyper-parameter. Instead
of pruning at every frame, this makes the decoder prune the
lattices after a preset interval of frames have been processed.
This was also ignored and kept at the default value of 25
frames during the manual optimization procedure. This was
varied from 5 to 50 in steps of 5 for automated optimization
techniques.

5. METRICS

In this section, we describe the individual optimization met-
rics used for this evaluation, and the scalarization technique
used to combine them for use with the automated optimiza-
tion techniques.

5.1. Word Error Rate

This is a standard metric used in the evaluation of the perfor-
mance of LVCSR systems. It is the ratio of total number of
substitutions, insertions and deletions to match the hypothe-
ses to the references to the total number of words in the refer-
ences. Lower values mean better performances.

5.2. Real Time Factor

This is the ratio of time taken to decode all the utterances to
the total duration of the utterances.

5.3. Memory Footprint

This is the maximum memory consumed by the system during
the process of decoding. This includes the constant memory
used by the decoding graph, acoustic model and the rescoring
language models, the memory required to store the features,
and the memory required to store the frame level lattices. The
remaining dynamic memory is the memory used for lattice
generation. For these experiments, we use a script 0 that sam-
ples the memory used by the process.

5.4. Augmented Tchebyscheff Function

This is a method of extending single objective optimization
techniques to multiple objectives. It combines the multiple
objectives that need to be minimized into a single value us-
ing a scalarizing vector. First, each objective is individually
normalized using the upper and lower bounds. The weight
vector w is chosen such that wi ≥ 0 ∀i and

∑M
i=1 wi = 1.

The augmented Tchebyscheff function is defined as:

ATF (x) = max
j

(wj f̂j(x)) + ρ

M∑
k=1

wkf̂k(x) (8)

f̂i is the normalized value of the objective function fi. It’s
computation requires knowledge of the upper and lower
bound of the objective function. ρ is a small positive value
that helps in avoiding weakly non-dominated points.

For the first experiment, we had decided on the weights
of the three objectives: 80% WER, 10% RTF, and 10% Mem-
ory footprint. We use this information for creating the weight
vector. For WER, normalization is trivial since it is lower
bounded by 0, and we can consider 100 to be a reasonable

0https://gist.github.com/netj/526585



upper bound. In our case, we also take the log of the real
time factor instead of it’s direct value since we want to al-
low a loss in WER only if we gain an order of magnitude in
real time factor. Since we are taking a log, to make mean-
ingful comparisons, we consider the maximum lower bound
to be log(0.001), and log(1) to be a reasonable upper bound.
For memory usage, we consider the total size of the HCLG
graph, the acoustic model, and the rescoring graph size to be
the lower bound. For practical purposes, we consider twice of
the lower bound as the upper bound.

6. EXPERIMENTAL SETUP

6.1. Acoustic Model

We use a feed forward fully connected deep neural network
acoustic model architecture trained using Librispeech [20] au-
dio data. The audio features consists of the log of 23 Mel
filter-bank features extracted from a window of 25 ms with
10 ms overlap. The input to the DNN consists of the current
feature frame with 5 consecutive frames from the past and fu-
ture concatenated together. There are 5 hidden layers, each
with 2048 neurons. The neurons in hidden layers have ReLU
activation [21]. The output is a soft-max layer which gives
the likelihood of 5683 senones for the current input feature.

6.2. Decoder

For our experiments, we use a hybrid lattice decoder [3]
whose output is rescored with a larger const-arpa language
model. The acoustic model likelihood is computed on a GPU,
while the lattice generation and rescoring is performed on the
CPU. Using this architecture allows for fast decoding speed
with a minor sacrifice in accuracy. Also, this helps in avoid-
ing the generation and storage of a massive decoding graph
that would have been needed if we used the giant language
model directly. We ran the system with a NVidia GeForce
TitanX graphics processing unit and an Intel Xeon E5-2690
CPU.

6.3. Language Models

As mentioned above, we have two language models. The
weak language model used to construct the decoding graph is
a bi-gram language model with 322K uni-gram and 67M bi-
gram entries. The larger language model used for rescoring
is a 4-gram with an additional 72M trigram and 51M 4-gram
entries.

6.4. Evaluation Data-set

For these experiments, we used a combination of custom eval-
uation data-sets provided by LGE Electronics. It has 6000
utterances, with a total duration of 5.2 hours. All audio is
sampled at 16 KHz. The audio is recorded from cell-phones

Fig. 1. ATF of best model at a given iteration for different
optimization techniques

and consists of message transcriptions and voice commands.
Since our task was to optimize only to these data-sets, we
have presented only the results for this data-set.

6.5. Experiments

For the first task, we optimized towards the scalarized ATF us-
ing the different optimization techniques. For the constrained
tasks, we imposed a threshold of 0.1 on the RTF and opti-
mized towards WER.

6.6. Optimizations

We perform manual optimization as specified in section 3.1.
For a fair comparison, we terminate all automatic optimiza-
tion techniques after the number of evaluations for manual
optimization. For GAs, due to the extremely limited number
of available iterations, we use a population of 5 with 5 gener-
ations of GA based optimization. For random sampling and
constrained random sampling (CRS), we ran 12 independent
runs of 25 iterations.

7. RESULTS AND DISCUSSION

Here, we describe the results of the experiments of the ex-
periments with the various optimization techniques. Fig.1
shows the best observed ATF value obtained at the given it-
eration. For random sampling, we plot the average ATF, with
the minimum and maximum value as error-bars. We see that
the automated techniques are able to match the manual op-
timization result within 8 iterations, and converge to perfor-
mance similar to Bayesian optimization as number of itera-
tions increases. GA, with a population of 5 and 5 iterations of
evolution performs similar to random sampling. This is be-
cause both the population size and the number of generations



Optimization WER (%) RTF Memory (GB) ATF
Manual 15.39 0.0969 44.28 0.1340

Random Sampling (average) 14.04 0.4122 44.33 0.1236
Bayesian Optimization 13.85 0.8453 44.43 0.1226

Tree of Parzen Estimators 14.52 0.2475 44.29 0.1273
Genetic Algorithm 14.02 0.3562 44.34 0.1234

Table 1. Results of the hyper-parameter optimization techniques with ATF as the objective

Optimization WER(%) RTF
Manual 15.39 0.0969
CBO 14.99 0.0907

CRS(average) 15.70 0.0841

Table 2. Results of constrained hyper-parameter optimization
techniques with WER as objective and RTF constraint of 0.1

Fig. 2. WER of best model satisfying constraints for different
constrained optimization techniques

for optimization are very small. We see from table 6.6 that
all the automated optimization techniques perform better than
the manual optimization, with the Bayesian Optimization per-
forming the best(8.5% better relative to Manual Optimiza-
tion), and TPE performing the worst. From our experiments,
we found that these hyper-parameters resulted in only slight
variations in the memory usage. Fig.2 shows the comparison
of Manual Optimization, constrained Bayesian Optimization
and constrained Random Sampling with an RTF threshold of
0.1. For constrained random sampling, we plot the average
WER, with the minimum and maximum values as error-bars.
Here, Bayesian optimization returns a model that performs
2.7% better relative the best manual optimization model with
an RTF below the threshold. Also, this model is found with
40% less iterations compared to manual search. The numer-
ical results are given in table 2. Constrained random sam-
pling converges towards manual optimization with increasing
iterations, with at least one run outperforming manual opti-
mization within 8 iterations. However, on average, it is worse
than manual optimization. For manual optimization in both
cases, we have only shown the result of the final model after
the tuning procedure.

8. CONCLUSION

We showed that the usage of automated optimization strate-
gies outperformed the usage of manual optimization for find-
ing the best decoder hyper-parameters for a DNN-HMM
online hybrid LVSCR system with lattice rescoring using the
scalar ATF objective function. We showed that even with a
hard constraint over the real time factor, constrained Bayesian
optimization yielded a hyper-parameter setting that outper-
formed both manual and random sampling, and yielded it
in significantly lesser iterations than manual search. This
approach is general in nature and should be made as a for-
mal outer loop to the training and decoding procedure. For
scalarized optimization, though multiple optimizations can
be leveraged, a careful tuning of the weights of the objectives
is required, making constraint based optimization more at-
tractive.

Acknowledgement
This work was supported in part under research grant
33912.1.1011568 from LGE Electronics.



9. REFERENCES

[1] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recogni-
tion,” Computer Speech & Language, vol. 16, no. 1,
pp. 69–88, 2002.

[2] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[3] Andrej Ljolje, Fernando Pereira, and Michael Riley,
“Efficient general lattice generation and rescoring,” in
Sixth European Conference on Speech Communication
and Technology, 1999.

[4] Shinji Watanabe and Jonathan Le Roux, “Black box op-
timization for automatic speech recognition,” in 2014
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2014, pp.
3256–3260.

[5] Takafumi Moriya, Tomohiro Tanaka, Takahiro Shi-
nozaki, Shinji Watanabe, and Kevin Duh, “Automation
of system building for state-of-the-art large vocabulary
speech recognition using evolution strategy,” in 2015
IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE, 2015, pp. 610–616.

[6] George E Dahl, Tara N Sainath, and Geoffrey E Hin-
ton, “Improving deep neural networks for lvcsr using
rectified linear units and dropout,” in 2013 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing. IEEE, 2013, pp. 8609–8613.

[7] Asmaa El Hannani and Thomas Hain, “Automatic op-
timization of speech decoder parameters,” IEEE Signal
Processing Letters, vol. 17, no. 1, pp. 95–98, 2010.

[8] James Bergstra and Yoshua Bengio, “Random search
for hyper-parameter optimization,” Journal of Machine
Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

[9] Eric Brochu, Vlad M Cora, and Nando De Freitas,
“A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and
hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[10] Jasper Snoek, Hugo Larochelle, and Ryan P Adams,
“Practical bayesian optimization of machine learning al-
gorithms,” in Advances in neural information process-
ing systems, 2012, pp. 2951–2959.

[11] JB Mockus and LJ Mockus, “Bayesian approach to
global optimization and application to multiobjective
and constrained problems,” Journal of Optimization
Theory and Applications, vol. 70, no. 1, pp. 157–172,
1991.

[12] Michael A Gelbart, Jasper Snoek, and Ryan P Adams,
“Bayesian optimization with unknown constraints,”
arXiv preprint arXiv:1403.5607, 2014.

[13] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl, “Algorithms for hyper-parameter opti-
mization,” in Advances in Neural Information Process-
ing Systems, 2011, pp. 2546–2554.

[14] James Bergstra, Dan Yamins, and David D Cox, “Hy-
peropt: A python library for optimizing the hyperparam-
eters of machine learning algorithms,” Citeseer, 2013.

[15] David Edward Goldberg, “Genetic algorithms in search,
optimization and machine learning,” 1989.

[16] Kim-Fung Man, Kit Sang Tang, and Sam Kwong, Ge-
netic algorithms: concepts and designs, Springer Sci-
ence & Business Media, 2012.

[17] Dario Izzo, “Pygmo and pykep: Open source tools for
massively parallel optimization in astrodynamics (the
case of interplanetary trajectory optimization),” in Pro-
ceedings of the Fifth International Conference on Astro-
dynamics Tools and Techniques, ICATT, 2012.

[18] Daniel Povey, Mirko Hannemann, Gilles Boulianne,
Lukáš Burget, Arnab Ghoshal, Miloš Janda, Mar-
tin Karafiát, Stefan Kombrink, Petr Motlı́ček, Yanmin
Qian, et al., “Generating exact lattices in the wfst
framework,” in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2012, pp. 4213–4216.

[19] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al., “The kaldi speech recognition toolkit,” in IEEE
2011 workshop on automatic speech recognition and
understanding. IEEE Signal Processing Society, 2011,
number EPFL-CONF-192584.

[20] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2015, pp. 5206–5210.

[21] Vinod Nair and Geoffrey E Hinton, “Rectified linear
units improve restricted boltzmann machines,” in Pro-
ceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), 2010, pp. 807–814.


