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Abstract This paper introduces the HRI-CMU Corpus of Situated In-Car Interac-
tions, a multimodal corpus of human-human interactions collected within highly
sensored vehicles. The corpus consists of interactions between a driver and copi-
lot performing tasks including navigation, scheduling and messaging. Data was
captured synchronously across a wide range of sensors in the vehicle, including,
near-field and far-field microphones, internal and external cameras, GPS, IMU, and
OBD-II devices. The corpus is unique in that it not only contains transcribed speech,
annotation of dialog acts and gestures, but also includes grounded object references
and detailed discourse structure for the navigation task. We present the corpus and
provide an early analysis of the data contained within. The initial analysis indicates
that discourse behavior has strong variation across participants, and that general
trends relate physical situation and multi-tasking to grounding behavior.
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1 Introduction

Developing intelligent agents that can understand and interact with users in dy-
namic, physically situated environments remains a grand challenge for spoken di-
alog research. While most research to date has focused on speech-only interaction
over the telephone [25, 10, 22, 28], recently there has been increased interest in spo-
ken dialog systems that can operate in physically situated environments. Examples
include the Mission Rehearsal exercise described in [5], the Microsoft Receptionist
[3], the CoSy project [7] and the AIDAS [12] and Townsurfer [9] systems.

A broad array of research challenges exist within the area of situated interac-
tion, all of which need to be considered to realize robust and natural interaction.
Challenges include monitoring and understanding situational context [15, 6, 8], un-
derstanding situated [18, 14] and spatial language [17, 24], grounding of object
references in situated dialog [2], and co-reference resolution [27, 13, 20]. Addition-
ally, in multimodal interaction, gaze, gestures and user actions [4, 11, 21] must all
be understood in relation to the physical environment in which they occur.

While corpora exist to develop and evaluate the performance of component tech-
nologies within spoken dialog systems, there is limited data available on situated
tasks in the real-world. Existing corpora focus on simple dialog over the telephone
[29], with robots [1], smart homes [19], and in cars [23].

In this paper we introduce a multimodal corpus of situated in-car interactions
that we collected to both analyze situated human-human interaction and to develop
core technologies to support research in situated interaction. The corpus consists of
interactions between a driver and passenger performing information retrieval, nav-
igation, scheduling and messaging tasks. Data collection was performed using a
highly sensored data collection platform that synchronously captured data across a
wide range of audio, visual, and vehicular sensors. The resulting corpus contains
synchronized data streams, time aligned transcriptions of driver and passenger in-
teractions, as well as annotations of discourse domain, dialog acts, gestures and
grounded references to physical objects and actions. In Section 2 of this paper we
describe the data collection procedure and platform. Section 3 details the annotation
performed and Section 4 presents an initial analysis of the corpus.

2 Data Collection Procedure

Data collection was performed at and around the Carnegie Mellon University cam-
pus at NASA AMES Research Park, Moffett Field CA. Collection was performed
in a highly sensored vehicle as described in Section 2.2 below. The collection pro-
cedure was designed to elicit spontaneous, situated dialog between the driver and
passenger, where the passenger’s role was of a co-pilot, who supported the driver to
complete the set of assigned tasks. Drivers were external participants that were re-
cruited and compensated for their participation. They had no prior knowledge of the
geography of the area or the tasks they were to perform. The co-pilot was one of six
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lab assistants who were familiar with the geography of Moffett Field and the tasks
to complete. No instructions about how to interact were given to either participant.

2.1 Scenario Tasks

Each driver completed five tasks of increasing complexity. After hearing a brief
explanation of the experiment, the driver and co-pilot negotiated the first trip, and
started driving. After completing a task, the co-pilot provided the driver with the
instructions for the next one. A short description of each task is given in Table 1. In
tasks 2 through 4, the path or goal needed to be altered due to an unforeseen event.
The co-pilot simulated these events by providing new information to the driver (in
the form of traffic updates, text messages, etc.) at an appropriate time or location
within a task. Tasks 4 and 5 were designed to involve receiving and responding to
text messages while simultaneously performing a navigation task. Subjects were
able to achieve all tasks, though with varying degrees of efficiency.

Table 1 The 5 task scenarios and planned interruptions used for data collection.

Task Instructions Given Interruptions

1 Pick a sight-seeing destination on
Moffett Field and navigate to it

None

2 Go to the post office, the gym,
then McDonald’s

Trip to the gas station to refill

3 Drop off colleague at their meet-
ing, then go to your meeting

Unplanned detour to avoid traffic

4 Go to your second meeting Invited to friend’s house, then and asked to return to des-
tination in 3 to drop off documents forgotten by colleague

5 Return to hotel None

2.2 Collection Platform

Data collection was performed using CESAR [16], the Car Environment Sensor
Adjustable Rig. The CESAR platform was developed specifically to capture syn-
chronized recordings across a large number of audio, visual and vehicular sensors,
and could be moved between vehicles. Within this corpus a total of ten vehicles
were used during the data collection. The rig consists of three main components, a
data collection PC, which resided in the trunk of the vehicle, a roof rack, on which
external sensors (external cameras, GPS antenna and IMU) were mounted, and a set
of internal sensors (internal cameras, microphones and OBD-II connector) which
were mounted in the cabin of the vehicle.
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Table 2 Sensors and capture settings during data collection

Sensor Location Description Rate (Hz) Sample Size

Stereo Camera pair External Two cameras mounted 100 cm
apart

30 640X480 (x2)

GPS External SF2050 GPS unit 50 128 Bytes
IMU External 120 32 Bytes
Driver Camera Internal Logitech C910 USB Camera 30 640X480
Kinect Internal Microsoft Kinect Sensor 30 640X480
Headset Mic Internal Countryman e6 microphones 48000 16bits
OBD-II Internal 10 256 Bytes

Table 2 lists the sensors used in the data collection. External sensors included
external cameras to capture the driver’s field-of-view, a high-precision GPS, and an
IMU for car orientation and chassis vibration. Internal sensors consisted of a USB
camera, a Kinect and microphones to capture the driver and copilot interaction.
A CAN-BUS device was used to capture the car’s On-Board Diagnostic (ODB-II)
information.

3 Annotation and Corpus Overview

36 runs were transcribed, and more detailed annotation has been performed on 15
of them. The same detailed annotation is planned for 5 more runs, and additional
annotators will be used to quantify annotator agreement for our annotation scheme.
The detailed annotation performed includes another round of speech transcription
validation, domain annotation, grounded object references including gestures, and
navigation discourse annotation.

3.1 Speech Transcription

Speech transcription was performed by Appen Butler Hill, then researchers in our
group gave another pass on the 15 runs that were being annotated in more depth.
The Kaldi speech decoder was used to align word boundaries. Table 3 summarizes
the speech data in this corpus.

Table 3 Amount of annotated speech data in the corpus (hours).

Driver Copilot Total Speech Total Audio

Transcribed 4.58 6.53 11.11 22.56
Fully Annotated 1.88 2.65 4.53 9.17
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3.2 Domain

Each word is labeled with the domains it is relevant to. This allows later annotators
and researchers to quickly extract the sections of the data that are of interest to
them. The Alerts / Messaging domain relates to any alerts the copilot delivers to
the driver or any messages that the copilot is relaying between the driver and his
contacts. The Navigation domain includes any discussion about where the driver is
going and how to get there. The Scheduling domain covers discussion pertaining to
when different people will be performing high-level tasks such as going to meetings.
The Experiment-OOD domain is dialog where the participants break character or
indicate that they are taking part in a controlled experiment. The domains are not
mutually exclusive, so a word can belong to several domains. Table 4 breaks down
the amount of speech data by speaker and domain.

Table 4 Percentage of speech by domain, broken down by speaker.

Speaker Navigation Business
Search /
Local Guide

Alerts /
Messaging

Scheduling OOD Experiment-
OOD

Total(Hrs)

Copilot 47.9 3.93 12.5 3.03 18.62 14.03 2.69
Driver 25.7 2.31 12.8 6.39 32.0 20.8 1.97
All 38.5 3.25 12.7 4.41 24.3 16.9 4.66

3.3 Object References

Groups of words that refer to a specific object or set of objects are labeled and
grounded to one of over 800 geo-located objects on Moffett Field. We also labeled
references to objects which are not stationary, and objects which are not in the imme-
diate situation, such as the driver’s fictional colleague and friend. Also, the presence
of gesture to help ground a reference was annotated as yes / no. Table 5 summarizes
the results.

Table 5 Break down number of object references by referent class and speaker. Number of ref-
erences accompanied by gesture are in parentheses. This table excludes references to the driver,
copilot and the car they are driving in.

Building or
Public Space

Person or
Vehicle

Road or
Driveway

Traffic Signal Other Total

Copilot 1083 (122) 654 (15) 599 (224) 186 (46) 234 (66) 2756 (473)
Driver 777 (63) 540 (5) 187 (55) 31 (5) 136 (26) 1671 (154)
Total 1860 (185) 1194 (20) 786 (279) 217 (51) 370 (92) 4427 (627)
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3.4 Navigation Discussion Units

Navigation discussion units (NDUs) are sections of discourse that contain the initial
presentation and grounding dialog of a single navigation action. This is a domain-
specific example of a grounding discourse unit [26]. The choice of the NDU was
based on the idea that low-level navigation actions are the primary pieces of infor-
mation that needs to be grounded. This intuition proved useful, as 63% of Naviga-
tion domain words could be annotated as belonging to an NDU grounding one of
the main primitive actions: Go To, Leave, or Stop At. Another 5% of Navigation
words were part of an NDU describing some other navigation action, and 17% were
discussion about setting a destination. Detailed analysis of the remaining navigation
dialog has not been done, but there were several cases of pointing out landmarks and
announcing task completion or other reflections on the task. Each of the three main
NDU types is grounded to the specific section of drive-able area where the action
under discussion is to take place. For example, an NDU where the copilot tells the
driver to ‘turn left here’ would usually be marked as Go To, with the grounded pa-
rameter set to the section of road to the left of the upcoming intersection. This is to
enable our later analysis to examine the interaction between dialog and execution,
which can be traced from GPS data.

More detail of the structure of NDUs in the corpus is in the following section,
but Table 6 shows an example of one of the most typical NDUs in the corpus, and
Table 7 shows a more interesting example where two NDUs are interleaved.

Table 6 The most common type of NDU in the data contains only a single utterance - a direction
from the copilot.

Speaker Transcript

Copilot go straight here

Table 7 A more interesting situation in which a previously grounded NDU is re-presented as a
reminder by the copilot. There were 24 pairs of overlapping NDUs in the corpus (48 total), making
up 3% of the total annotated NDUs.

NDU ID Speaker Transcript

1 Copilot and a right at the next stop sign
1 Driver alright
2 Driver so we go in here or not
2 Copilot yes
2 Driver we do
1 Copilot let’s turn right here
1 Driver okay
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3.5 Dialog Acts

Within each NDU, words were broken up into dialog acts to analyze the discourse
structure in more depth. The set of dialog acts contains a standard mix, with the ad-
dition of the domain-specific “Request Direction”; Direct, Offer, Request Direction,
Ask Clarification, Give Clarification, Reject, Acknowledge / Confirm, Other. Along
with the label, we also recorded weather or not a gesture was present and contributed
to the meaning of the dialog act. Since all our annotations were at the word level,
this annotation missed dialog acts that were purely gesture with no spoken compo-
nent. Table 8 shows the most common DA sequences composing an NDU. In the
majority of cases, only a small amount of grounding discussion is required.

Table 8 The most common sequences of dialog acts composing an NDU

Number of Samples Sequence

530 Direct
300 Direct, Ack
65 Direct, Give Clarification
48 Direct, Give Clarification, Ack
29 Offer, Ack
27 Offer, Give Clarification
319 Remaining, 207 other DA sequences

4 Analysis

In this section, we show some early analysis of the corpus. We attempt to shed
light on the relationship between the physical situation and dialog behavior. We also
investigate the effects of multi-tasking, and differences across copilots and drivers.

4.1 Copilot and Driver Differences

Our initial investigations show that there are drastic differences in dialog form across
copilots and across drivers given a single copilot. Table 9 shows the words per dialog
act and DAs per NDU for each copilot. Plotting the distributions of these variables
and others across runs reveals wide differences not just in scale but in shape. Further
investigation of these differences is upcoming work, but in the next several sections
we describe some general trends that have emerged.
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Table 9 Words per Dialog Act by Copilot

Copilot A B C D E F

Number of DAs 1330 670 114 620 260 234
Avg. words per DA 4.97 5.42 4.39 4.01 3.67 4.29
Std. words per DA 3.11 3.65 3.30 3.02 2.81 3.18

Number of NDUs 760 349 71 257 116 121
Avg. DAs per NDU 1.76 1.92 1.63 2.42 2.26 1.91
Std. DAs per NDU 1.45 1.68 1.41 1.75 1.70 1.72

Fig. 1 The ratio of clarifica-
tion/gesture frequency when
many objects vs few objects
are near the car during an
NDU (see text for details).

4.2 Navigation Dialog and Situation Ambiguity

This corpus allows us to investigate the relationship between physical situation and
dialog behavior. Here, we consider two key attributes of an NDU, whether it con-
tains a clarification or clarification request, and whether it is accompanied by ges-
ture. Our hypotheses related to these attributes are that physical situations that are
more complex or ambiguous (such as an intersection with many roads or a location
with many buildings) entail the need for more clarification and gesturing to assist in
the disambiguation process.

To perform a quantitative analysis, we used GPS data and our manually anno-
tated map of over 800 situated objects on Moffett Field to determine the complexity
of a physical situation. We counted the number of objects that are within a certain
radius of the vehicle (hereafter “nearby objects”) at the time of a given NDU. To
measure of correlation, we split the whole set of NDUs into two subsets of equal
size: NDUs with fewer nearby objects than the median (high ambiguity situations),
and NDUs with more nearby objects than the median (low ambiguity situations).
For each subset, we compute the proportion of NDUs containing a clarification, and
the proportion of NDUs containing gesture. One empirical question is, what dis-
tance threshold should we use to classify objects as “nearby”? To answer this, we
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computed clarification and gesture frequency while varying the radius in 5 meter
increments from 5 to 95 meters. Figure 1 shows the ratio between clarification fre-
quency in high ambiguity situations vs low ambiguity situations. A value of 1.5 on
the vertical axis indicates that clarifications are 1.5 times more likely to happen in
high ambiguity situations than in low ambiguity situations. We performed a simi-
lar analysis for gestures (also on Figure 1). For clarifications, results indicate that
high ambiguity situations consistently yield higher clarification rates (Y-axis value
> 1) for all thresholds. This is consistent with our first hypothesis. The curve has a
maximum at 15 meters, showing that, in this corpus, the density of objects within
a 15-meter radius around the car is a good measure of situation ambiguity. The dif-
ference between the distributions of number of nearby objects (with a threshold of
15 meters) for NDUs with and without clarification is highly statistically significant
(p < 0.001, using the Mann-Whitney test). No such result holds for gestures where
there seem to be little correlation between our measure of situation ambiguity and
gesture frequency.

4.3 Task / Dialog Interaction

To gain some insight into how the task state relates to dialog behavior, we defined
a binary function multitasking(t). The participants are multi-tasking according to
this function if within 5 seconds of t, there are words annotated with at least two of
the following task-oriented domains - Navigation, Business Search / Local Guide,
Alerts / Messaging, or Scheduling. An NDU is multi-tasking if any point within the
NDU is multi-tasking. In this section we compare dialog behavior between multi-
tasking and non-multi-tasking situations. Table 10 shows standard statistics compar-
ing word length, words per dialog act, and dialog acts per NDU while multi-tasking
vs not multi-tasking. All of these measures of communication efficiency are lower
while multi-tasking. Figure 2 shows the side-by-side histograms of how many DAs
are used per NDU when multi-tasking vs. not mult-tasking. One stark difference we
can observe from this is that while multi-tasking, NDUs are nearly three times more
likely to last only one dialog act.

5 Conclusion and Future Work

This corpus provides a unique opportunity to do multi-modal task-based interaction
in a dynamic in-car situation. Our initial annotation and analysis shows interesting
trends relating physical situation to dialog behavior. Upcoming work will try to
better quantify the differences and similarities between users and co-pilots, annotate
5 more runs, and gather inter-annotator agreement numbers to better understand the
sources of variation.
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Table 10 Word lengths, words per DA, and DAs per NDU while multi-tasking vs. not multi-
tasking

Multi-tasking Not Multi-tasking

Number of words 4672 15218
Avg. word length (s) .263 .284
Std. word length (s) .307 .351

Number of DAs 543 2672
Avg. words per DA 4.64 4.72
Std words per DA 3.21 3.26

Number of NDUs 357 1317
Avg. DAs per NDU 1.53 2.04
Std. DAs per NDU (s) 1.62 1.59

Fig. 2 The number of dialog
acts per NDU while multi-
tasking vs. not multi-tasking.
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and Michael Wong. “you stupid tin box”-children interacting with the aibo robot: A cross-
linguistic emotional speech corpus. In LREC, 2004.

2. M. Crocker. Grounding spoken interaction with real-time gaze in dynamic virtual environ-
ments. In International Conference on Computational Linguistics, 2012.



The HRI-CMU Corpus of Situated In-Car Interactions 11

3. Eric Horovitz Dan Bohus. Dialog in the open-world: Platform and applications. In Proc.
ICMI, 2009.

4. Pattie Maes David Merrill. Augmenting looking, pointing and reaching gestures to enhance
the searching and browsing of physical objects. In Pervasive Computing, 2007.

5. Jeff Rickel David Traum. Embodied agents for multi-party dialogue in immersive virtual
worlds. In Proc. AAMAS, 2002.

6. Anind K. Dey. Situated interaction and context-aware computing. In Personal and Ubiquitous
Computing, 2001.

7. G. J. M. Kruijff et. al. Situated dialogue processing for human-robot interaction. In Cognitive
Systems, 2010.

8. Stephanie Seneff et. al. Exploiting context information in spoken dialog interaction with
mobile devices. In Proc. Intl. Workshop on Improved Mobile User Experience, 2007.

9. Teruhisa Misu et. al. Situated multi-modal dialog system in vehicles. In Proc. ICMI, 2013.
10. Milica Gasic. On-line policy optimisation of spoken dialogue systems via live interaction with

human subjects. In Proc. Automatic Speech Recognition and Understanding, 2011.
11. et al. H. Zender. An integrated robotic system for spatial understanding and situated interaction

in indoor environments. In Proc. AAAI, 2007.
12. Antoine Raux Ian Lane, Yi Ma. Immersive interaction within vehicles. In Proc. Spoken

Language Technology Workshop, 2012.
13. James Allen Joel Tetreault. Semantics, dialogue, and reference resolution. Technical report,

Rochester University Dept. of Computer Science, 2006.
14. Zahar Prasov Joyce Chai. Fusing eye gaze with speech recognition hypotheses to resolve

exophoric reference in situated dialogue. In Proc. EMNLP, 2010.
15. Jun Rekimoto Katashi Nagao. Ubiquitous talker: spoken language interaction with real world

objects. In arXiv preprint cmp-lg/9505038, 1995.
16. Ian Lane. Cesar: The car environment sensor adjustable rig. Technical report, Carnegie Mellon

University, 2012.
17. Yi Ma, Antoine Raux, Deepak Ramachandran, and Rakesh Gupta. Landmark-based location

belief tracking in a spoken dialog system. In Proceedings of the 13th Annual Meeting of the
Special Interest Group on Discourse and Dialogue, pages 169–178. Association for Compu-
tational Linguistics, 2012.

18. Amy Isard Manuel Giuliani, Mary Ellen Foster. Situated reference in a hybrid human-robot
interaction system. In Proc. INLG, 2010.
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