

Introduction

- ► ASR decoding on servers should take as less computational resources as possible.
- ▶ More users can then be served by allowing more instances to run in parallel.
- ► Given:
- DNN-HMM Acoustic Model and 3 and 4-gram Language Model
- Validation Dataset
- Online hybrid lattice-based rescoring decoder
- ► Objectives:
- Minimize word error rate (WER), real-time factor (RTF) and memory footprint
- Minimize WER given a hard constraint of 0.1 on RTF.

Approach

- Scalarize the objectives and minimize the scalarization. Techniques Compared:
- Manual Optimization
- Random Sampling
- Genetic Algorithm
- Tree of Parzen Estimators Approach
- Gaussian Process based Bayesian Optimization
- ▶ Formulate RTF as a constraint and minimize WER with RTF constraint. Techniq Manual Optimization
- Constrained Random Sampling (CRS)
- Constrained Bayesian Optimization with Gaussian Processes (CBO)

Decoder

- Online Hybrid Lattice based rescoring decoder.
- AM likelihood computation on GPU
- Decoder graph traversal and rescoring on CPU.
- Rescoring done with a const-arpa language model.

Hyper-parameter	Range/Values
Acoustic Scale	0.05 - 0.3
Decoder Beam	10.0 - 18.0
Maximum number of active states	3000:500:8000
Minimum number of active states	50:50:300
Lattice Pruning beam	4.0 - 10.0
Lattice Pruning interval	5:5:50 frames

Table 1: Ranges for the decoder hyper-parameters used in all optimization technique

Scalarization

- Augmented Tchebyscheff Function (ATF)
- ▷ Combines multiple objectives into a single value using a scalarizing vector. ▷ $ATF(x) = \max_j (w_j \hat{f}_j(x)) + \rho \sum_{k=1}^M w_k \hat{f}_k(x)$ where $w_i \ge 0 \forall i$ and $\sum_{i=1}^N w_i \hat{f}_i(x)$
- Selected weights: WER: 0.8, RTF: 0.1, Memory: 0.1

Optimization Techniques Setup

- ► All Optimizations run for 25 iterations
- Manual Optimization
- Best acoustic scale found by using the language model reweighting giving best full beam settings
- Decoder beam search done till a point where WER degraded by 10%.
- ▶ Lattice beam search done till WER degraded by an additional 10%.
- Maximum number of active states searched up to point that there was no degra performance.
- Genetic Algorithm
- 5 iterations with population of 5
- Mutation Probability:0.02, Crossover Probability: 0.95

Automated Optimization Of Decoder Hyper-Parameters for online LVCSR

¹Electrical and Computer Engineering, Carnegie Mellon University ²Language Technologies Institute, Carnegie Mellon University akshayc@cmu.edu, lane@cmu.edu

	Experimental Setup	
t for the decoder.	 Acoustic Model Feed-Forward Fully connected DNN Trained using LibriSpeech Corpus Input Feature frame: Log of Filterbate Input to DNN: Current frame is splited by 5 Hidden layers 2048 Neurons per hidden layer with 5683 Output Acoustic States using Language Model Weak LM: Bigram LM 322k unigrams 67M bigrams Const ARPA LM: 322k unigrams 67M bigrams 51M 4-grams Evaluation Dataset: Provided by LGE 6000 Utterances, 5.2 hours Recorded from cell-phones SMS transcriptions and commands 	Architecture ank with 23 filterbanks ced with 5 frames from ReLU activation a SoftMax Layer
	All audio for training and evaluation	n sampled at 16kHz
	Results: Approach 1	
	Technique	WER (%) RTF
	Manual Random Sampling (average)	15.39 0.0969 14.04 0.4122
	Genetic Algorithm	14.02 0.3562
	Tree of Parzen Estimators	14.52 0.2475
	Bayesian Optimization Table 2: Results of the single-objective by	13.85 U.8453
	0.24	
	0.22	Genetic Algo Tree of Parze
	(alue	Best Manual
ues	€ 0.20	
	Augura	
M	0.14	
$w_i = 1$	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	
		Iteration number
	Figure 1: ATF of best model at	t a given iteration for differ
	Random Sampling are averaged over 12	independent runs.
performance at	Toolkits Used	
	Toolkit	Optimization Techr
	Spearmint Bayesian Opti	mization, Constrained
radation in	PyGMO	Genetic Algorith
	Acknowledgements	
	I his work was supported in part under	research grant 33912.1

Akshay Chandrashekaran¹, Ian Lane^{1,2}

	Results: Approach 2
n past and future	Technic Manual Constrained Random S Constrained Bayesia Table 3: Results of constrained hyper-parameter option
	0.32 0.28 0.24 0.24 0.22 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.14 0.25 0.14 0.5 5 Figure 2: WER of best model satisfying and the satisfying an
	Discussion
Memory (GB)ATF44.280.134044.330.123644.340.123444.290.127344.430.1226	 For Approach 1: Bayesian Optimization is best (8.5%) Automated Techniques outperform M Memory Usage as a optimization met For Approach 2: Constrained Bayesian Optimization performed Optimum achieved with 40% fewer it Constrained Random Sampling performed
imization rithms n Estimators	Conclusion
Optimization pling	 Usage of automated optimization strate iterations. For small number of iterations, evolution Bayesian Optimization outperformed oth Constrained Bayesian Optimization is a outer loop to the training and decoding Scalarized optimization requires careful optimization a more attractive choice.
20 25	References
ent optimization techniques	 J. Bergstra and Y. Bengio, "Random search for h vol. 13, no. Feb, pp. 281–305, 2012. J. Snoek, H. Larochelle, and R. P. Adams, "Pract <i>in neural information processing systems</i>, pp. 295
iques Bayesian Optimization nators ns	 [3] J. Bergstra, D. Yamins, and D. D. Cox, "Hyperoplearning algorithms," Citeseer, 2013. [4] KF. Man, K. S. Tang, and S. Kwong, <i>Genetic a</i> Springer Science & Business Media, 2012. [5] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, Cet al., "The kaldi speech recognition toolkit," in <i>understanding</i>, no. EPFL-CONF-192584, IEEE Si
.1011568 from LGE Electronics.	[6] M. A. Gelbart, J. Snoek, and R. P. Adams, "Baye

lne	WER(%)	RTF
al	15.39	0.0969
ampling (average)	15.70	0.0841
n Optimization	14.99	0.0907
	•	·

timization techniques with WER as objective and RTF constraint of 0.1

constraints for different constrained optimization techniques

ged over 12 independent runs.

better ATF than manual optimization) *A*anual Optimization within 8 iterations tric was largely uninformative.

performed best (2.7% better WER than manual) terations.

rmed poorer than manual optimization on average

egies outperformed manual optimization for same number of

onary algorithms are no better than random sampling. ther optimization strategies for ATF objective.

generalized approach and should be considered as a formal procedure.

tuning of objective weights, making constrained

hyper-parameter optimization," Journal of Machine Learning Research,

ctical bayesian optimization of machine learning algorithms," in Advances 51–2959, 2012.

opt: A python library for optimizing the hyperparameters of machine

algorithms: concepts and designs.

O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, IEEE 2011 workshop on automatic speech recognition and Signal Processing Society, 2011.

yesian optimization with unknown constraints," UAI, 2014.