Speeding up Hyper-parameter Optimization by
Extrapolation of Learning Curves using Previous Builds

Akshay Chandrashekaran, Ian R. Lane

Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA
akshayc@cmu.edu lane@cmu.edu

Abstract. Recent work has shown that the usage of extrapolation of learning
curves to determine when to terminate a training build has been shown to be ef-
fective in reducing the number of epochs of training required for finding a good
performing hyper-parameter configuration. However, the current technique uses
the information only from the current build to make the prediction. We propose
the usage of a simple regression based extrapolation model that uses the trajec-
tories from previous builds to make predictions of new builds. This can be used
to terminate poorly performing builds and thus, speed up hyper-parameter search
with performance comparable to non-augmented hyper-parameter optimization
techniques. We compare the predictions made by our model against that of the
existing extrapolation technique in different tasks. We incorporate our approach
into a pre-existing termination criterion. We incorporate this termination crite-
rion into an existing hyper-parameter optimization toolkit. We analyze the per-
formance of our approach and contrast it against a baseline in terms of quality of
prediction in three different tasks. We show that our approach yields builds with
performance comparable to the non-augmented version with fewer epochs, and
outperforms an existing parametric extrapolation technique for two out of three
tasks in terms of number of required epochs.

Keywords: Hyper-parameter Optimization, Extrapolation of Learning Curves,
Bayesian Optimization, Deep Neural Networks

1 Introduction

Deep neural networks have become ubiquitous in various fields in machine learning
to solve complex problems like speech recognition, machine translation, image recog-
nition, etc. Training the neural network involves specifying a model architecture, and
passing training data in the form of randomized mini-batches to find the gradient of
a selected loss function. This gradient is then propagated back through the network,
whose parameters are changed to minimize the loss.

Typically, training a neural network this way requires iterating over multiple epochs
of training. The surface of the loss distributed over the model architecture is not convex,
and its properties are generally unknown, thus making structure specification a non-
trivial problem. Automated black-box hyper-parameter optimization techniques have



shown to outperform manual and grid search for hyper-parameter optimization. How-
ever, these techniques rely on the complete training of the model for a given hyper-
parameter setting.

In the presence of large amounts of data, training neural networks up to completion,
which entails either a termination condition based on the performance over a valida-
tion data-set or a bound a maximum number of epochs can take multiple days to finish.
Given this, training multiple neural network architectures is computationally very ex-
pensive, and can quickly become infeasible.

Humans can use information gained from previous model builds and current model
trajectory to determine how a model is likely to perform at the end of training. Some
work has been done to automate the above intuition using a parametric model in [JS].
Empirically, learning curve trajectories across different hyper-parameter configurations
look remarkably similar. Exploration on the usage of the above observation to build
better extrapolation strategies have only recently gained interest [9]. We propose an
alternative extension to a probabilistic model that extrapolates the performance of a
model at the early stages of training using the trajectories of previous model builds to
identify and terminate poorly performing builds quickly.

Our contributions in this paper are as follows:

— We present a simple, yet effective approach to leverage the learning curves of pre-
viously completed builds to predict what the learning curve of the current build is
likely to terminate in section [3.1]

— We incorporate this approach with an existing termination criterion algorithm in
section[3.2]

— We analyze the quality of predictions obtained from this approach in terms of over-
all fit to the actual learning curve, as well as the performance at the final epoch in
section[d.2 for three different tasks.

— We incorporate this new termination criterion within an existing hyper-parameter
optimization toolkit.

— We analyze the performance of the proposed termination criterion and compare it
against the baseline technique in section[4.3]

2 Related Work

We first review hyper-parameter optimization techniques popular in modern literature
and previous attempts to model learning curves.

2.1 Hyper-parameter Optimization Techniques

Other than manual tuning, one of the most utilized hyper-parameter optimization tech-
niques in machine learning has been the grid search. Recently, simple random sampling
[L] has been shown to outperform grid search, particularly in high dimensional prob-
lems. Sophisticated sequential model based global optimization techniques employing
Bayesian Optimization [12], tree of Parzen estimators [2l], SMAC [8] have been shown



to perform even better on several data-sets and tasks. For our task, we have used rel-
atively few hyper-parameters to optimize. Hence, based on [6], we integrate our pro-
posed approach with Spearmint [[12] for our experiments. However, this approach can
be integrated with any other hyper-parameter optimization technique with relative ease.

2.2 Modelling Learning Curves

In this work, we are trying to model the performance of an iterative ML algorithm as
a function of iterations. We consider the performance of the ML algorithm in terms
of validation accuracy over epochs to be the learning curve. The goal is to predict the
validation performance and terminate a build that is unlikely to beat the best one so far.
Freeze-thaw Bayesian Optimization [15] is a GP based Bayesian Optimization tech-
nique that includes a parametric exponential decay model for modelling the learning
curve. They use this to perform exploration of several configurations by temporarily
pausing the training of models, and then resuming the training. This technique has been
shown to work on matrix factorization, online latent Dirichlet allocation (LDA) and lo-
gistic regression, but has not performed well on deep neural networks [5]. In [5], the
authors model the learning curve for each selected hyper-parameter configuration using
a weighted combination of parametrized exponential decay models. The following is an
explanation of their termination criterion as understood from the code, which varies a
bit compared to the explanation given in their paper. Every m epochs, the performance
values are gathered, and Markov chain Monte Carlo (MCMC) is run to estimate the
distribution of the parameters of the extrapolation model. Using this, the predicted ter-
mination value and uncertainty of the prediction is computed. If the standard deviation
of the prediction falls below a specified threshold, the probability of the current model
outperforming the best model so far is computed. If this probability falls below another
specified threshold, the training is terminated, with the expected value returned in lieu
of the real loss. Otherwise, the training is allowed to proceed. This method is shown
to give builds with performance comparable to un-augmented optimization techniques
while speeding up optimization by a factor of 2. We will be using this approach as the
baseline for comparison.

In [9], the authors have built Bayesian neural networks based on trajectories ob-
tained from random samples of hyper-parameter configurations, which have shown to
have better fit compared to [S]. However, they require the presence of a large number
of prior trajectories to effectively train their network, which is problematic if the task is
new, and very computationally expensive.

To our knowledge, we are not aware of any prior research into prediction of learn-
ing curve trajectories that uses only a few previous builds to make accurate and fast
predictions of the performance in the termination stage.

3 Proposed Approach

Given a machine learning algorithm A having hyper-parameters Aj, ..., A, with re-
spective domains A1, ..., A,, we define the hyper-parameter space as the hyper-cube
A = Ay x ... A,. For each hyper-parameter setting A € A, we use A to denote the



learning algorithm A using this setting. We further use I, (A) = L (Ax, Pirain, Dvalid)
to denote the best validation accuracy till epoch k that Ay achieves on data D,qi4
when trained on Dy,.q,. We further denote The hyper-parameter optimization 1, (A) =
maxy [ (A) to be the maximum validation accuracy obtained for the algorithm us-
ing X over all epochs. The hyper-parameter optimization problem is to find A* =

arg max ().
AcA

3.1 Ensemble of Learning Curves Model

In this section, we describe how we probabilistically extrapolate from a short initial
portion of the learning curve for a given model, and information from previous builds
to predict the validation accuracy at a later point. For simplicity, let y, , indicates the
best validation accuracy observed till epoch k for the 7" build, i.e. Y, = lx(\;.).

Yoim = [Yr1,Yr2,-- -, Yrn] denotes the observed performance values for the rth
build till epoch n. m is the final epoch after which a build will be terminated (m > n).

Yir—11m = [Yi,m:Y2.m,---»Yr—1,m] is the observed performance values from
previous r — 1 builds.

Our objective is, given R—1 completed previous builds (Y1.r—1,1:mm), and n epochs
from the current build (yr,1.,), to predict the performance of the current build at ter-
mination: yg ,,. We solve this problem using an ensemble of learning curve models as
described below.

Our approach is to transform the data from previous builds to approximately match
the current build. We propose that the learning curve for the current build is a simple
affine transformation of a previous build with an additive noise component. For each
previous build 7 = 1 : R — 1 for a given epoch k,

yARrJg = arYrk + br +¢

1
e~ N(0,0?) )

We assume the noise ¢ to be normally distributed with variance o2.

Using this definition, we construct a loss function comprised of all available infor-
mation from the current build. This takes the form of a linear regression problem.

01 (]. — (Lr)2

1 . 2
L,= ;”yR,l:n - YRT,LnHz + 9 b ()

where Yr,. 1., = [YRy1YRr2) - - - YRrn) The second term in the loss function is added
to prevent pathological conditions of warping of the curves when only the initial epoch’s
information is present. This puts the majority of the contribution towards the loss to be
by the offset term b, for the first epoch, with this effect quickly dying out as more
information becomes available.

The derivatives of the loss function with respect to the parameters a, and b, are
given by:

oL, 1 . 1—a,
6ar = _%(YR,l:n - er,l:n)TYT,lva - al(eGﬁ) ;
oL, 1 )

b _ﬁ(yR,l:n - yAR7-71;n)T]—1:n
r



where T indicates the transpose of the vector, and 1., is an identity vector of
length n.

Using the above loss and gradients, we perform simple gradient descent with multi-
ple random start points for all the available previous builds. Once this is done, we select
the top S parameter combinations and corresponding builds. We project the selected
builds with their respective parameters. From this, we can get the expected value of the
prediction and it’s standard deviation for all subsequent epochs.

S
E eri,k
1=1

S
1 .
G%R,k = S_—1 Z (eri,k - /‘@R‘k)2
i=1

Hir, =

Nl —

“

Using the above mean and standard deviation definitions, we can estimate the prob-
ability that y,,, exceeds a certain value g as

P(ym > g|yR,1:n7Y1:R71,1:m) =1- ¢(g;u:’;f{)'m,7 O%Rym) (5)

where ®(.; 1, 02) is the cumulative distribution function of a Gaussian with mean g and
variance o2,

The rationale behind the above method is inspired by the theory of wisdom of
crowds [14]] [16]. Our method satisfies the criteria required to form a wise crowd as

described therein.

Diversity of Opinion: Each estimator uses the validation accuracy trajectory of only
it’s own previous build.

— Independence: Each estimator trains its own parameters independent of any previ-
ous builds or concurrently built estimator.

Decentralization: Each estimator’s regression depends only on the validation accu-
racy trajectories of the current build and the one previous build it is based on.
Aggregation: Equations [4] and [5] are the mechanisms to convert private judgements
(estimate of prediction) to a collective decision.

3.2 Termination Criterion

We use a modified version of the termination criterion as described in [S]] using the
predictive model described above to speed up hyper-parameter search. We keep track of
the best performance ¢ found so far. Each time the optimizer queries the performance
. (A) for a hyper-parameter setting A, we begin the training of the DNN using A as
usual. At the end of each epoch n, we record the performance over the validation set
YR,1:n- We Tun the algorithm described in section to determine my,, ., ngm and
P(Ym > 9lYr1:m, Y1:R—1,1:m). We use this information in algorithm |I{ to determine
whether or not to terminate the current build. If the criterion dictates that the build be
terminated, we replace it’s final value [, (A) to be the expected value derived by the
ensemble method.



ConservativeTerminationCriterion Procedure
Data: current learning curve: Y. 1:n,
previous learning curves: Y1.r—1,1:m (m < n),
predictive mean: pigp, .\
predictive standard deviation: ogp, .,
probability of exceeding best observed value: P(Ym > §|YR,1:n; Y 1:R—1,1:m)s
probability threshold: 4,
standard deviation threshold: o¢sresh
if y, > y then
‘ Continue Training till completion
else
if P(ym > §lyR,1:n, Y1:R—1,1:m) > 0 then
‘ Continue Training for next epoch

else

if JQka Z Othresh then

‘ Continue Training for next epoch
else
Terminate build
return figp

end

end

end
Algorithm 1: Procedure for the Conservative Termination Criterion

Practical Considerations Empirically, we have observed that on integrating the above
with our hyper-parameter optimization toolkit, we observed that for some of the tasks, if
either of the initial build points performed really well, then the termination criterion be-
came very aggressive in pruning off paths, which could result in builds that would have
become viable in later epochs getting pruned very quickly. Hence, we have enforced a
condition that a few initial builds be trained till completion. This empirically results in
a better spread of validation accuracy trajectories that could be used for comparison,
resulting in lower prediction loss. Another reason for this enforcement is to satisfy the
independence condition for the wisdom of crowds. In the initial builds, Bayesian opti-
mization is much more explorative in nature. Hence, the first few builds can, in some
sense be considered to be independent of each other.

Another empirical observation showed that the optimization technique usually under-
predicted the performance of the current build, despite the enforced condition that the
validation accuracy is non-decreasing. Hence, we have employed a recency weighting
schema during training, which has a geometrically decreasing weight-age to the resid-
ual at earlier epochs as opposed the residual of later epochs.

Finally, we have also incorporated a monotonicity check during the gradient compu-
tation: The predicted accuracy of the estimator cannot be lesser than the best observed
value so far. This is a logical check based on our definition of the validation accuracy at
a given epoch.



4 Experimental Setup

4.1 Tasks

To test the validity of our proposed approach, we performed empirical tests in three
different tasks. We describe the training and evaluation procedure for each of the tasks
below.

MNIST Image Classification The MNIST image classification task deals with classi-
fying hand-written digit images of size 28 x 28 pixels. We use a simple fully connected
DNN network here to take in a single image and return a distribution over the 10 labels.
The hyper-parameters and ranges are given in table [T} The data-set consists of 60000
training images and 10000 test images. Each network is trained up to 20 epochs, with
the epoch giving the best test accuracy being selected as the final model for the given
hyper-parameter configuration. The training was done using MXNet training toolkit us-
ing a single GPU. The performance metric is the accuracy of classification over the
validation data-set, which is to be maximized.

Hyper-parameter Type Minimum | Maximum| Step
Number of layers int 1 8 1
Number of neurons per layer| int 32 3200 32
Learning rate float| 0.001 0.1 -
Learning rate factor float 0.5 0.9 0.1
Learning rate step epochs | list |{[4,8,12,16], [5,10,15], [10]}

Table 1: Hyper-parameters for MNIST classification task

CIFAR-10 Image Classification The CIFAR-10 data-set [[10] consists of 60000 32 x
32 images belonging to 10 different classes, with 6000 images per class as the training
corpus, and 10000 images in the test corpus. For this task, we implement a variation
of the ResNet [7] architecture for classifying an image into the 10 classes. The hyper-
parameters and ranges for this model are given in table 2| For the number of conv
units in each segment, we had a geometric progression based on the segment number.
The first segment would have 16 conv units per layer, the second 32, the third 64,
and so on. The training was done using MXNet training toolkit on a single GPU. The
performance metric is the accuracy of classification over the validation data-set, which
is to be maximized.

Large Vocabulary Continuous Speech Recognition For this task, we selected the
optimization of a simple fully-connected deep neural network (DNN) hidden Markov
model (HMM) hybrid speech recognition system trained on the Wall Street Journal
(WSJ) corpus. This consists of 286 hours of training data, with a validation set of 503



Hyper-parameter Type|Minimum|Maximum Step
Number of residual segments int 1 8 1
Number of Conv Layers per segment| int 1 5 1
Learning rate float| 0.001 0.1 -
Learning rate factor float 0.5 0.9 0.1
Learning rate step epochs list | {[30, 60, 90. ..., 270], [60, 120, 180, 240],
[90, 180, 270], [120,240], [150], [200,250]}

Table 2: Hyper-parameters for CIFAR-10 classification task using the ResNet architec-
ture

utterances. The following is a brief description of the training pipeline. An initial Gaus-
sian Mixture Model based system is trained using the Kaldi recipes [L1] up to the tri4b
stage. Once this is done, a training corpus of extracted log-mel filter-bank features [4]],
with labels obtained by the alignment of the trained text to the audio is generated. We
use 40 mel-filterbanks based on [13]. 10 iterations of DNN training using stochastic
gradient descent is performed using the training framework used in [3]. The iteration
giving the best validation set word error rate is selected as the final model trained for
the given hyper-parameter configuration. The structure of the DNN model depends on
the model hyper-parameters of number of input frames spliced, the number of hidden
layers, and the number of neurons per hidden layer. The hyper-parameters and ranges
for this task are given in table[3] The performance metric for this task is word error rate
(WER), which is the ratio of the total number of substitutions, insertions, and deletions
to be performed on a hypothesis to match the reference. This needs to be minimized for
this task. To fit the description of the proposed approach, we take 1 - WER as the metric
to maximize.

Hyper-parameter Type|Minimum Maximum Step
Frame Context Splicing int 0 9 1
Number of hidden layers int 1 6 1
Number of neurons per hidden layer| int 512 2944 128

Table 3: Hyper-parameters for the WSJ LVCSR Task

4.2 Experiments on Quality of Predictions

The first set of experiments involve finding the quality of the predictions made by the
proposed method. We look at two different metrics for this. The first, is the average root
mean square error (RMSE) of the prediction across all the epochs. This gives us an idea
of how well the overall prediction fits with the actual observations. The second is the
average RMSE of the prediction over only the final epochs. This gives an indication of



the performance of the estimators for the termination criterion that will be integrated to
any hyper-parameter optimization technique.

Experimental Setup We compute these numbers while progressively increasing the
number of previous builds, and progressively increasing the number of available epochs
from the current build. For the MNIST and CIFAR-10 tasks, we conducted 100 builds
with randomly varied hyper-parameter setting to construct the initial data-set. For the
WSJ task, we conducted 30 builds with random hyper-parameters. For each build, we
select the specified number previous builds from the remaining builds randomly. We
use our proposed approach to compute the predictions for all the remaining epochs for
the current build. We conduct the above 50 times, and average the results over all the
resultant combinations.

For the ensemble approach, we perform 100 iterations of gradient descent with ran-
dom initialization of the affine parameters per previous build, and select the top 100
transforms with the least training loss to construct the ensemble estimator.

Results The results for assessing the quality of predictions are given in Fig.[I]and Fig.
2l

Figures (Ta), and show the variation of the RMSE of the predictions over
all epochs as a functions of number of epochs completed in the current build, while fig-
ures (Ib), (Id) and (If) show the corresponding average predictive standard deviations
across all epochs.

Figures (2a)), and show the variation of the RMSE of the predictions of
the final epoch as a functions of number of epochs completed in the current build,
while figures (2b)), (2d) and (2f) show the corresponding average predictive standard
deviations over only the final epoch.

We observe the for all the cases, in the proposed method, using successively more
number of previous builds to predict the result for the current build improves the pre-
diction loss. Looking at the predictions, we observe the average RMSE of predictions
across epochs and average RMSE of the prediction for the final epoch goes down as the
number of previously completed builds increases. In the initial epochs for all three, our
proposed approach performs significantly better than the baseline prediction method
in both metrics. For all the tasks, we observe that,if given 5 initial builds, we match
or outperform the baseline method for at least the initial 20% of the epochs. For the
remaining epochs, the results are more of a mixed bag, but the proposed and baseline
method perform comparably across all the tasks.

We observe that for the CIFAR-10 task, we observe a higher loss in terms of predic-
tion over all the different scenarios, however the baseline is dramatically more confident
in it’s prediction. This may result in potentially terminating builds in the initial epochs,
even if those builds can potentially get better at later stages. In contrast, the standard
deviations of our proposed ensemble approach is more in line with the average RMSE
across all tasks.



10

0.005 0.005
—e— num_prev:1 —e— num_prev:1
—e— num_prev:2 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
0.004 num_prev:4 0.004 num_prev:4
num_prev:5 num_prev:5
num_prev:6 N num_prev:6
0.003 —— num_prev:7 | B 003 —— num_prev:7
" —e— num_prev:8 g —e— num_prev:8
8 baseline elc o =~ baseline elc
0.002 5 0.002
s
0.001 0.001
0.000 0.000
0 2 4 6 8 10 12 14 16 18 [ 2 4 6 8 10 12 14 16 18 20

epoch

(a) MNIST: Average Prediction RMSE

0.04

0.03

loss

0.02

0.01

epoch

(b) MNIST: Average Prediction Standard De-

viation
0.05
—e— num_prev:1 —e— num_prev:1
—e— num_prev:2 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
num_prev:4 0.04 num_prev:4
num_prev:5 5 num_prev:5
num_prev:6 ° num_prev:6
—e— num_prev:7 g 0.03 —e— num_prev:7
—e— num_prev:8 o —e— num_prev:8
= baseline elc € baseline elc
3
& 0.02
c
o
@
€
0.01
0.00
50 100 150 200 250 30 0 50 100 150 200 250 300
epoch epoch

(c) CIFAR-10: Average Prediction RMSE

(d) CIFAR-10: Average Prediction Standard

Deviation
0.0200 0.0200
—e— num_prev:1 —e— num_prev:1
0.0175 —e— num_prev:2 0.0175 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
num_prev:4 num_prev:4
0.0150 - 0.0150 -
num_prev:5 num_prev:5
num_prev:6 | s num_prev:6
0.0125 —— num_prev:7 | 8 0.0125 —— num_prev:7
—e— num_prev:8 g —e— num_prev:8
ﬁ 0.0100 —*= baseline elc | ¢ 0.0100 —*— baseline elc
g
0.0075 ? 0.0075
a
0.0050 0.0050
0.0025 0.0025
0.0000 0.0000
0 2 4 6 8 0 2 4 6 8 10
epoch epoch

(e) WSJ: Average Prediction RMSE

(f) WSJ: Average Prediction Standard Devia-

tion

Fig. 1: Quality of Predictions in three tasks over all epochs. The left plots show the
average RMSE, while the right shows the predictive standard deviation over all epochs.
num_prev indicates the number of previous builds used to build the estimator.



11

0.005 0.005
—e— num_prev:1 —e— num_prev:1
—e— num_prev:2 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
0.004 num_prev:4 0.004 num_prev:4
num_prev:5 num_prev:5
num_prev:6 N num_prev:6
0.003 —— num_prev:7 | B 003 —— num_prev:7
" —e— num_prev:8 g —e— num_prev:8
8 baseline elc o =~ baseline elc
0.002 5 0.002
s
0.001 0.001
0.000 0.000
0 2 4 6 8 10 12 14 16 18 20 [ 2 4 6 8 10 12 14 16 18 20
epoch epoch

(a) MNIST: Average Prediction RMSE (b) MNIST: Average Prediction Standard De-

viation
0.05 0.05
—e— num_prev:1 —e— num_prev:1
—e— num_prev:2 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
0.04 num_prev:4 0.04 num_prev:4
num_prev:5 num_prev:5
num_prev:6 > num_prev:6
0.03 —— num_prev:i7 | B g3 —— num_prev:7
" —e— num_prev:8 § —e— num_prev:8
8 baseline elc o =~ baseline elc
0.02 S 002
L
a
0.01 0.01
0.00 0.00
0 50 100 150 200 250 30 0 50 100 150 200 250 300
epoch epoch

(c) CIFAR-10: Average Prediction RMSE  (d) CIFAR-10: Average Prediction Standard

Deviation
0.0200 0.0200
—e— num_prev:1 —e— num_prev:1
0.0175 —e— num_prev:2 0.0175 —e— num_prev:2
—e— num_prev:3 —e— num_prev:3
num_prev:4 num_prev:4
0.0150 - 0.0150 -
num_prev:5 num_prev:5
num_prev:6 | s num_prev:6
0.0125 —s— num_prev:7 %’_0-0125 —e— num_prev:7
—e— num_prev:8 g —e— num_prev:8
ﬁ 0.0100 —*= baseline elc | ¢ 0.0100 —*— baseline elc
g
0.0075 ? 0.0075
a
0.0050 0.0050
0.0025 0.0025
0.0000 0.0000
0 2 4 6 8 10 0 2 4 6 8 10
epoch epoch
(e) WSJ: Average Prediction RMSE (f) WSJ: Average Prediction Standard Devia-
tion

Fig. 2: Quality of Predictions in three tasks at the final epoch. The left side shows the
average RMSE at the final epoch, while the right shows the average standard deviation
over the final epoch. num_prev indicates the number of previous builds used to build
the estimator.



12

4.3 Experiments on Integration with Bayesian Optimization

The second set of experiments evaluate the performance of integrating the proposed
termination criterion with an existing hyper-parameter optimization toolkit. The experi-
ments performed here use a combination of integral and floating point hyper-parameters
which do not have any hierarchy. Also, the number of hyper-parameters to be opti-
mized is low for our current test cases. Hence, based on the findings of [6], we have
selected Bayesian Optimization as the sequential model based optimization method for
our overarching automated hyper-parameter optimization technique. We have modified
the Spearmint toolkit [[12] to incorporate the termination criterion.

Experimental setup For each task, we perform three sub-experiments. The first per-
forms normal Bayesian Optimization without any early stopping (Non-augmented). So,
each build will run till completion. The second experiment incorporates the termina-
tion criterion using the baseline extrapolation of learning curves as described in [3]] into
Bayesian optimization (Baseline ELC). The third incorporates the termination criterion
using the proposed extrapolation of learning curves technique as described in section[3]
into the Bayesian optimization (Proposed ELC).

For each sub-experiment for MNIST and WSJ, we perform 30 builds in a single
iteration of optimization. For CIFAR-10, we perform 20 builds for a single optimiza-
tion iteration. For all the sub-experiments, we analyze the best validation performance
metric obtained at the end of the optimization run, and the total number of epochs of
learning required to reach the end of optimization. We are aware that each epoch within
each model build can have dramatically different time requirements. However, because
we are trying to reduce the number of epochs required for training, we do not report the
actual wall time required to finish the optimization run.

Results Table. ] shows a comparison of the performance of the two extrapolation ap-
proaches. Each sub-table performs the comparison for each individual task. We observe
that in the MNIST and WS]J tasks, the proposed ensemble approach requires fewer num-
ber of epochs to find the best performing build compared to the baseline extrapolation
technique, with little to no loss in performance. In the case of the CIFAR-10 task, though
the baseline performs fewer epochs, there is a substantial decrease in performance in
terms of accuracy. We presume this is due to the learning rate annealing feature (the
last row in table[2). Empirically, we saw that at the epochs where the learning rate was
annealed, there was a significant improvement in the validation accuracy. This infor-
mation of probable future improvement is not captured by the baseline extrapolation
technique. However, since similar behavior was probably observed in the previously
completed builds used by the proposed extrapolation method, the termination criterion
does not kill the job immediately. This can also be tied in to the observations of the loss
and standard deviation trajectories in figures and (2d).

Although we have shown only one run of hyper-parameter optimization for each,
we do not expect to see a large variance between multiple runs.



Extrapolation Total Epochs Best Accuracy(%)
type (Relative improvement) |(Relative Improvement)
Non-augmented 600 98.76%
Baseline ELC 370 (38.3)% 98.76% (0.0%)
Proposed ELC 257 (57.16%) 98.63% (-0.1%)
(a) Task: MNIST
Extrapolation Total Epochs Best Accuracy(%)
type (Relative improvement)|(Relative Improvement)
Non-augmented 6000 91.359%
Baseline ELC 4292 (28.9%) 90.5% (-0.9%)
Proposed ELC 5019 (16.3%) 90.92% (-0.4%)
(b) Task: CIFAR-10
Extrapolation Total Epochs Best WER(%)
type (Relative improvement) |(Relative Improvement)
Non-augmented 300 7.85%
Baseline ELC 201 (33%) 7.85% (0%)
Proposed ELC 171 (43%) 7.85% (0%)

Table 4: Performance comparison on integration with Bayesian Optimization

(c) Task: WSJ



14

5 Limitations and Future Directions

The proposed approach currently uses only the information from completed builds to
make the prediction for new builds. Due to this, it can make predictions only up to the
number of epochs in the current build. The baseline method [5], although not explored,
does not suffer from this limitation. One possible work-around could be to use paramet-
ric models like the baseline approach on the previously completed builds, and train an
ensemble predictor using those.

In it’s present form, it relies on the presence diversity in the initial builds to come
up with good extrapolation models for new builds. Though we have used a single prob-
ability threshold, standard deviation threshold, and minimum number of required initial
builds across the tasks, there is no guarantee that this value will produce the optimal
result, i.e. best build in least number of epochs. Other tasks could potentially have dif-
fering thresholds.

Our technique relies on the random initialization of the affine transformation param-
eters to result in the presence of a variety in the training loss values which will guide
which weak estimators are selected. This can be made more formal using Markov Chain
Monte Carlo MCMC), which we plan to explore in the future. Using this could also
incorporate some of the practical considerations mentioned in in a more formal
manner.

Finally, the proposed approach does not use the build hyper-parameters directly to
guide the ensemble construction. This is another future direction we plan to explore.

6 Conclusion

We have studied an ensemble approach for modelling learning curves of machine learn-
ing algorithms. We have analyzed the performance of this technique across three dif-
ferent tasks. We have demonstrated its performance when integrated with an automated
optimization technique over these three tasks. This approach requires relatively small
overhead for the estimation, and performs remarkably well in a majority of the tasks.
It lends itself well to sequential optimization techniques since it relies on the presence
of few builds that have run to completion to make predictions for subsequent builds,
and shows improvement in prediction accuracy as more builds get completed. We have
discussed the strengths and limitations of this new approach compared to previous ap-
proaches, and have discussed some potential ideas for further improvement of this tech-
nique.

Note

The source code is available at
https://github.com/akshaycll/Spearmint
under the branch elc. Please refer to this for more details.



References

10.
11.

12.

13.

14.
15.

16.

. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Ma-

chine Learning Research 13(Feb), 281-305 (2012)

. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimiza-

tion. In: Advances in Neural Information Processing Systems. pp. 2546-2554 (2011)

. Chan, W,, Lane, I.: Deep recurrent neural networks for acoustic modelling. arXiv preprint

arXiv:1504.01482 (2015)

. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word

recognition in continuously spoken sentences. IEEE transactions on acoustics, speech, and
signal processing 28(4), 357-366 (1980)

. Dombhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimiza-

tion of deep neural networks by extrapolation of learning curves. In: International Joint Con-
ference on Atrtificial Intelligence (IJCAI), 2015. pp. 3460-3468. AAAI Press / International
Joint Conferences on Artificial Intelligence (2015)

. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:

Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In:
NIPS workshop on Bayesian Optimization in Theory and Practice. pp. 1-5 (2013)

. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770-778
(2016)

. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration (extended version). Technical Report TR-2010-10, University of
British Columbia, Computer Science, Tech. Rep. (2010)

. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with bayesian

neural networks. Proc. of ICLR 17 (2017)

Krizhevsky, A.: Learning multiple layers of features from tiny images. Citeseer (2009)
Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P, et al.: The kaldi speech recognition toolkit. In: IEEE
2011 workshop on automatic speech recognition and understanding. IEEE Signal Processing
Society (2011)

Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems. pp. 2951-2959 (2012)
Soltau, H., Saon, G., Kingsbury, B.: The ibm attila speech recognition toolkit. In: Spoken
Language Technology Workshop (SLT), 2010 IEEE. pp. 97-102. IEEE (2010)

Surowiecki, J.: The wisdom of crowds. Anchor (2005)

Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896 (2014)

Yampolskiy, R.V., Ashby, L., Hassan, L.: Wisdom of artificial crowds-a metaheuristic algo-
rithm for optimization. Journal of Intelligent Learning Systems and Applications 4(2), 98
(2012)



	Speeding up Hyper-parameter Optimization by  Extrapolation of Learning Curves using Previous Builds
	Introduction
	Related Work
	Hyper-parameter Optimization Techniques
	Modelling Learning Curves

	Proposed Approach
	Ensemble of Learning Curves Model
	Termination Criterion

	Experimental Setup
	Tasks
	Experiments on Quality of Predictions
	Experiments on Integration with Bayesian Optimization

	Limitations and Future Directions
	Conclusion


